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A local H-theorem is derived for a recently proposed extension of Enskog 
kinetic theory to a dense model fluid composed of particles with interactions 
extending beyond a hard core. 
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1. I N T R O D U C T I O N  

A long-standing problem in the kinetic theory of fluids at moderate and 
high densities is how to treat the effect of a range of molecular interaction 
that extends beyond the nearly impenetrable repulsive core that can 
reasonably be modeled as a hard-sphere core. The most obvious complica- 
tions in this connection are as follows. First, for high densities, particles are 
most of the time interacting with several other particles simultaneously and 
it is typically not possible to represent the evolution of the system in terms 
of a sequence of binary collisions. Next, the potential energy density is not 
determined by the one-particle distribution function alone, and therefore 
even on the simplest level of approximation the one-particle distribution 
function alone is not sufficient to describe the state of the system. 

A possible way of dealing with these difficulties was considered 
recently by Karkheck et a/. (1) as part of a program proposed by Stell and 
co-workers to extend the Enskog theory in a way that takes into account 
the effect of the extended range of interactions. Following the terminology 
of Stell et aL (z) we will refer to the theory investigated by Karkheck et al. 

1 Department of Chemistry, State University of New York, Stony Brook, New York 11794. 
2 On leave from: Katedra Fizyki, Uniwersytetu Szczecinskiego, 70-451 Szczecin, Poland. 
3 Department of Mechanical Engineering, State University of New York, Stony Brook, 

New York 11794. 

821 

0022-4715/89/0900-0821506.00/0 �9 1989 Plenum Publishing Corporation 



822 Btawzdziewicz and Stell 

as kinetic variational theory, version III (KVT III). To avoid problems 
related to simultaneous multiple collisions, Karkheck et  aI. considered a 
model system of particles with a hard core of diameter d supplemented by 
an attractive square-well interaction of range R. The advantage of such a 
model is that the duration of partial collisions either at the hard core or at 
the square-well edge is equal to zero. Subsequently, KVT III was applied 
also to a more general interaction, with a slowly varying potential inside 
the well which was treated in a mean-field manner. In order to keep the 
treatment of a system tractable, the KVT III is formulated in such a way 
that correlations between repeated partial collisions are ignored. If the 
density is high enough, this assumption seems reasonable: Between two 
successive partial collisions of any pair of particles • each of the particles 
i and j will usually suffer several collisions with other particles. 

While ignoring dynamical correlations between colliding particles, 
Karkheck et  al. retained correlations between particle positions. To 
approximate such static correlations, they assumed that for a given one- 
particle distribution F1 and a given potential energy density u, the state of 
the system is described by a probability distribution which maximizes the 
informational entropy functional under the constraints that functions F 1 
and u are reproduced correctly. The two-particle distribution function 
derived from such approximate ensemble, when inserted into the first 
BBGKY hierarchy, yields evolution equations for both F~ and u. 

KVT III has been tested for a square-well fluid against computer 
simulation data. (3) As might be expected, at low densities the theory yields 
poor estimates for the velocity autocorrelation function and the self- 
diffusion coefficient, due to the neglect of correlations between subsequent 
partial collisions of identical pairs. At intermediate densities the theory 
makes reasonable predictions. At high densities it provides too high values, 
due to the neglect of ring terms and other correlated collision sequences. 
KVT III was applied also in analysis of the transport properties of real 
fluids. (4) When supplemented by a phenomenological rule for approxi- 
mating a pair potential by a hard-core part and an attractive tail, it can be 
used to obtain quite good predictions for transport coefficients for simple 
fluids such as noble gases. 

KVT III has a number of features to be expected from any consistent 
approximate kinetic theory. First of all, the local energy conservation law 
is obeyed, as it was incorporated in a natural way into the theory. Earlier 
theories suffered from the problem that energy was not strictly conserved 
either on the global or on the local level. (2'5'6) Next, KVT III exactly 
describes equilibrium states of the system, both for uniform and non- 
uniform fluids, as is true of the revised Enskog equation (7,8~ (REE) for a 
hard-sphere fluid. It has already been proved in ref. 1 (see also ref. 9) that 
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KVT III obeys a global H-theorem and thus it describes the approach of 
a system toward equilibrium. 

The main objective of the present paper is to show that KVT III has 
not only a global, but also a local H-theorem for a rather general class of 
pair potentials with a hard core and a discontinuity in the soft tail. Such 
a local H-theorem is an important step in demonstrating that a system can 
be described in terms of irreversible thermodynamics after approaching a 
state of local equilibrium. (After this paper was completed we learned from 
Henk van Beijeren that he has independently considered such a local 
H-theorem for the square-well potential in unpublished work.) In what 
follows we will define the local "entropy density" for a system described by 
KVT III. Then we will go on to a derivation of a local entropy-balance 
equation with a positive-definite source term. We will present our results in 
a form explicitly invariant under Galilean transformations. In our analysis 
we apply techniques similar to those used in the recent derivation of a local 
H-theorem for the REE. (a~ Despite apparent similarities, there are some 
important differences between the two derivations. These differences are 
due to the nontrivial role played by the potential energy density for 
KVT III. In particular, in the derivation of an H-theorem for KVT III we 
have to deal with quasiequilibrium correlations for a system in which both 
density and local temperature are nonuniform. 

Our paper is organized as follows. In Section 2 we outline KVT III 
and introduce basic kinetic equations. In Section 3 we define a non- 
equilibrium entropy density for the system described by KVT III. Next, in 
Section 4 we derive the entropy-balance equation with the positive-definite 
entropy production. The paper concludes with some remarks in Section 5. 
Some details of our calculations are relegated to the appendices. 

2. K I N E T I C  E Q U A T I O N S  

We consider a system of identical particles of mass m, with phases 
x; = (ri, vi), where r~ -= (i) is the position and v~ is the velocity of particle i. 
The relative position of the particles i and j is given by r~ = ri - rj, and the 
relative velocity by v u = v ~ - v  j. The particles are subject to a time- 
independent external potential ~b(i) which includes a wall potential. They 
interact via a spherically symmetric pair potential ~b(/j) which is a sum of 
a singular hard-core term ~bHC(0" ) and a finite part ~bs(/j) extending beyond 
the core, 

~b((/) = ~bHC(0' ) + ~bf (/j) (2.1) 
with 

~bHC(/j) = {~, ' r~ (2.2) 
ru>d 
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where r 0 = Ir0. I. We assume that the finite part ~bf consists of two terms: a 
square potential well of depth e > 0 and a smooth and slowly varying 
potential tail ~bs: 

(~f(ij') = -eO(R - rv) + (J firo) (2.3) 

where O(x) is the unit step function 

0, x < 0  
O(x) = 1, x>~ 0 

The square-well edge yields a singular attractive force at r o = R. We note 
that (2.1)-(2.3) includes the case of a potential consisting of a hard-sphere 
core and a truncated Lennard-Jones tail. In contrast to the effect of instan- 
taneous partial collisions at the hard core and at the square-well edge, the 
effect of the smooth part of the potential in the framework of KVT III is 
treated in a mean-field manner. The parameter e in Eq. (2.3) can also take 
negative values, in which case appropriate modification of the description 
of collisions has to be made. 

The time evolution of the one-particle distribution function Fm(xl, t) 
and of the local potential energy density u(1, t) is determined respectively 
by (note the difference in the definition of the operators Tu here and in 
ref. 1): 

{6E t3 1 a~(1) 0 } 
~ ,+Vl"Or  1 m 8r~ (~u Fl(Xl;/)  

= f dx2]-~'(12 ) + 6L(12)] F2(Xl, x2; t) (2.4) 

and 

u(1, t) + ~ ~r-~r l f MV1 f Mx2 Vlq~(12)F2(Xz' x2; t) 

1 
= ~ f dr1 f dx2[~b(12) T(12)+ v12~b',(12)] F2(xl, x2 ;t)  (2.5) 

with the following notation: 

Fl(X; t )=  6 ( x -  xi) 
i 1 

F2(x' x'; t ) : / j ~ t  = ~(X--Xi)  O(Xt--XJ)l  

ivaj  

(2.6) 

(2.7) 
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l f dvl f dx r (2.8) 

(A(FN, N))= ~ f dFupN(Fu;t)A(FN, N) (2.9) 
N = 0  

where A is an arbitrary function, t denotes time, FN = (xt ..... XN) is the 
point in the phase space, p u ( F u ; t )  is a probability density, and 
d F u = d x  1 . . . d x N / h 3 N ! ,  with h Planck's constant. The operator ~L(ij)  
describes the influence of the smooth part of the pair potential upon the 
evolution of the system and is defined as 

a L ( ~ ) = r  (2.10) 
Ov~ 

r = c3r (2.11) 

where 

The binary collisional operator T(tj) for a pair i, j is most conveniently 
defined through its adjoint operator T(O'))= T*(O'), where 

f d ,f ev, lrlo)g=f dv, f (2.12) 

for any functions f and g of variables (x ,  x]). Four different terms in 

4 

T(tj)= ~ T,(ij) (2.13) 
l=1  

describe collisions between particles i and j at the hard core (1= 1), 
entering ( l= 2) and leaving (l= 3) the potential well, and rebounding at the 
inside potential-well edge ( l= 4), respectively. Explicitly, 

Tl(ij) = dt(iJ) 6(r o. - Rz) Iv u ' rul 0t(vu" r0) 

x Eb,(0") d,*(O') - d7 (0")] (2.14) 

where 

R1 = d, Re = R3 = R4 = R, rij = r i jru  

01(y) = 02(y) = O ( -  y )  

03(y)=O(y--Ve)  

0 4 ( y  ) = O(y) O(V e -  y) 
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and re=  (2elm) 1/2. The operators bl(o') change the velocities of particles i 
and j according to the collisional dynamics. The center-of-mass velocity 
(vi+ vj)/2 remains unchanged, while the relative velocity %. is changed 
according to 

b 1 (/j)v/j -- b4(ij')vij = vij - 2fu (vii �9 fg) 

b2(0") vu = v0 - r0 { [(vu" r0) 2 + v231/2 + v,y" fis} (2.15) 

b3(0") v/J = Vo" -~- 1"0" { [- (V/J ~ rty )2 - - / )2 ]  1/2 _ v0. o rty } 

The operators dt(O') are inserted in order to produce unique results when 
Tt(~j) acts upon functions discontinuous at r 0 = Rt. We define the operators 
d+(o') by the formula 

f(r0. ) d+ (/j) g(r~j) = limo+ f(r~) g((1 + ~). r0) 

valid for any functions f and g of the variable r~j, and we denote the 
adjoint operator dt_+(~j)= dT(ij" ). With this notation we have dl = d2=d_,  
at3 = d4 = d+, dr* = d7 for l = 1, 4, and dl*= dt for l = 2, 3. The adjoint Tt(/J) 
of Tt(ij) follows from Eq. (2.14), relation 

bT(ij') = b~(/j) (2.16a) 

for l = 1, 4, and 

[-]Vu" f/j ] O2(vij'fij) b2(ij)]*= ]vu'f/j ] 03(-vi j . fu)b3(j i)  (2.16b) 

It follows from the definition of the operators T~ that for any function f(O') 
continuous at r~ = R 

T(ij) f((]) = 0 (2.17) 

The action of the operators Tz(ij) on functions discontinuous at 
r,~ = Rt has been specified here in a different way than in ref. 1. This change 
does not effect the first BBGKY-hierarchy equation (2.4) and allows us to 
write the energy equation (2.5) and the expression for entropy-production 
density in a very compact way. 

The closure of the hierarchy equations (2.4) and (2.5), which is given 
in KVT III, is obtained using the maximization-of-entropy procedureJ 1) In 
this procedure it is assumed that for any t the phase-space density pu(F; t) 
is given as 

pN(FN; t )=~- - l exp  2(x i ; t ) - -  ~ ~(ri)~b(i,j) (2.18) 
i = l  i , j = l  

j # i  
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where Z is the normalization factor, and 2(xi; t) and fl(ri; t) are Lagrange 
multiplier fields that have to be chosen such that the one-particle distribu- 
tion function Fl(x; t )  and the potential energy density u(r;t) are 
reproduced correctly. The quantity fl(r; t) is the multiplier field corre- 
sponding to the potential energy density and kBfl(r; t) can be interpreted 
as the inverse of the local potential energy temperature (in what follows we 
will use the temperature scale for which kB = 1). In equilibrium the poten- 
tial energy temperature equals the kinetic energy temperature, but out of 
equilibrium the two temperatures are not necessarily the same, which has 
a nontrivial effect on the bulk viscosity. (H) Assumption (2.18) yields the 
closure approximation for the two-particle reduced distribution function 

FKVTtx 2 ~ 1, x 2 ; t ) = F l ( x x ; t ) F x ( x 2 ,  t) g2(r12;t) (2.19) 

Through the constraints imposed on the Lagrange multipliers 2(x; t) and 
//(r; t) the pair correlation function g2 depends functionally on the local 
number density n(r; t) = ~ dv Fl(X; t) and the energy density u(r; t). In the 
sequel we will assume that the change of variables u ( . ; t ) ~ ( . ; t )  is 
possible in the correlation function g2 and all other functionals of n (or F1) 
and u. 

3. E N T R O P Y  D E N S I T Y  W I T H I N  K V T  III 

Keeping in mind the assumption (2.18) on an approximate statistical 
ensemble, we define now a nonequilibrium entropy-density functional for 
the system described by KVT III. The structure of the approximate 
ensemble (2.18) has a form very similar to a grand canonical ensemble 
appropriate for description of equilibrium nonuniform fluids (see, e.g., the 
review article by Evans(a2)). Besides the velocity dependence of the distribu- 
tion function, the only important difference is that the inverse temperature 
//in the ensemble (2.18) is nonuniform, whereas for equilibrium states the 
temperature is always constant throughout a system. Although this 
difference is important from the physical point of view, it does not influence 
greatly the formal structure of the theory, and a number of important 
expressions for equilibrium thermodynamic potentials can be easily 
adapted to the nonequilibrium situation. A brief derivation of formulas 
necessary to define a local entropy density in the framework of KVT III is 
given in Appendix A. 

The most natural choice of the form of the local entropy density 
s( l lFl( t ) ,  ~(t)) (per unit volume) leads to 

s ( l l F l ( t ) , f l ( t ) ) = s ~ ( l l F l ( t ) ) + s  .... ( l ln( t ) ,~( t ) )  (3.1) 



828 Btawzdziewicz and Stell 

The first term in expression (3.1) corresponds to Boltzmann's theory (ideal- 
gas contribution): 

IFl(t))-- - f  dvl F1(x~; t){ln[h3Fl(Xl; t)] - 1} (3.2) sB(1  

The second term describes the effect of correlations. We define it as a 
Legendre transform of the nonequilibrium counterpart if(l) of the nonideal 
(excess) part of the equilibrium Massieu-function local density (the 
function -/~-l~b is a counterpart of excess free energy density) 

S . . . .  (lln,~)=~P(lln,~)+~(1)u(lln,[3) (3.3) 

The Massieu function ~p, as in an equilibrium theory, can be expressed as 
an integral of a one-particle direct correlation function c~ 

1 
0(1 In,/~) =n(1) i ~ d~cl(ll~n,B) (3.4) 

As discussed in Appendix A, the one-particle correlation function cl obeys 
a hierarchy equation of the form 

n(1) t~cj(1 In,/3)/0r~ 

= f d2[A(12) -/~(12) ~b',(12)] 

• g2(121n,~)-u(lln,~)Ofl(1)/~r~ (3.5) 

where 

and 

A(12) = [6(r12-cr+)--6(r~2-R-)+6(r12-R+)]~12 (3.6) 

/~(12) = [fl(1) +/~(2)]/2 

Further, Cl has the properties 

- 6 - ~ J  B = \ 6n(1) J/~ 

(6c1(2)  ?u(lt  

(3.7) 

(3.8) 

(3.9) 
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From expression (3.4), property (3.9), and a very important identity 

f] d~ 6A(1 ..... k lan ' f l ) -A(1  ..... kln, fl) (3.10) f d(k+ 1) n(k+ 1) 
6n(k + 1 ) 

valid for any functional A(1,...,k]n, fl) for which A(1,...,kln=O, fl)=O, 
and k = 0, 1,..., it follows immediately that 

f d2 (60(2)~ = -u (1 )  (3.11) 
\6fl(1)J~ 

Using the above identity and Eq. (3.3), one can easily find the following 
expressions for functional derivatives of the correlation part of the entropy 
S c ~  : 

),, \6n(2)J/ 

x (60(1)']  (6B(3)'] (3.12) 
\ & ( 3 ) } .  \ 6n (2 ) ) .  

and 

( 6s~~ 1 )'~ 
6U(2) } = f l ( 1 ) f i ( 1 - - 2 ) + f d 3 [ 1 - - P ( 1 3 ) ]  

x (60(1)']  (6fl(3)'] (3.13) 
k6fl(3)J.  \6u(2)J. 

where the operator/5(0 ") permutes the variables i and j:  

P(ij)) F(ij) = F(ji) 

Note that the nonequilibrium entropy density s defined in this section 
resolves itself in an equilibrium state into the usual equilibrium entropy 
density. 

4. LOCAL H - T H E O R E M  

We will now go on to a derivation of a balance equation for the 
nonequilibrium entropy density. Our strategy is as follows: First we 
evaluate the time derivative of the entropy density with the help of the 
kinetic equations (2.4) and (2.5). The next and crucial step is to separate 
the expressions obtained in this way into a sum of an entropy-flow term 
and a positive-definite entropy production. We will use the invariance of 

822/56/5-6-18 
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the resulting entropy-balance equation under the Galilean transformation 
as an important criterion for correctness of the final result. 

To separate entropy-flow terms from the entropy production, we will 
repeatedly apply in our expressions the following general identity: 

8 
f dj [ f ( i j ) - f ( j i ) ]=  --~r~If/d2 fdrrf(r~+ ( 1 - 2 ) r ,  r~-  2r)] (4.1) 

which is valid for any function f of the variables (/j) and allows us to trans- 
form an integral with an integrand antisymmetric under a permutation of 
its variables into the divergence of an appropriate current. In order to 
express our results in a compact form, in the remainder of this paper we 
will use the following shortened notation: 

1 

J-(12) f (12)=  r2 f0 d2 f ( r l  + (1 -2 ) r2 ,  r I - - 2 r 2 )  (4.2) 

First we will analyze the time derivative of the Boltzmann part of the 
entropy density. The kinetic equation (2.4) implies the continuity equation 

8 8 
-~ n = - -~r l (nw) (4.3) 

where the mean velocity field w(1; t) is defined by 

n(1; t)w(t; t )=  f dv~ V~Fl(X~; t) (4.4) 

By applying the kinetic equation (2.4) with the closure (2.19) we calculate 
the time derivative of the Boltzmann part (3.2) of the entropy density. 
Taking into account identity (2.12) for the T and T operators, Eq. (2.17), 
and the definition (2.10) of the operator 6L12, we find 

sa 8 (WSB+JsBk) 
Ot 8rl 

- f dVl f dx2 FKVT(xl, X2) T(o') ln Fl(x~) (4.5) 

where J f f  is the kinematic Boltzmann entropy-current density: 

J~(1;  t) = - f dr1 Iv1 - wl(1; t)] Fl(xl ;.t) ln[h3Fl(Xl ; t)] (4.6) 
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To transform the last term on the right-hand side (rhs) of Eq. (4.5), we use 
the identity (4.1). The antisymmetric part contributes to the entropy-flow 
term, and the symmetric part will be interpreted as the source term. We 
can rewrite Eq. (4.5) in the form 

a u a 
+~r l  (wsB +a~k +J'UP) = aB (4.7) ~7 s 

where the potential part of the entropy-current density is given by 

J~P(1, t )=  _ _ l f  2 d2 J-(12) 

f dv 1 f d ,  2 FKVT(x1, X2) V(12)In F,(x,) (4.8) • 

and the source term is of the form 

1 
a~(1, t)-- - ~  f dv I f dx 2 FKVT(xlx2) T(12)ln[Fl(x,)  FI(xa)] (4.9) 

We now study the time derivative for the correlation part of the 
entropy density: 

a s .... ( 1 ) = f  d2( 6s .... (1)~ 0 at \ ~n(25 Ju& n(2) 

(15S .... (1)~ a ( + d2 //(2) (4.10) 
\ g g i 5 / .  ~7 

Using the expressions (3.12) and (3.13) for the functional derivatives of 
s .... , we can rewrite the time derivative as a sum of four terms 

0 
- - s  .... =A+B+C+D (4.11) 
at 

where 

and 

A ( 1 ) = I  d2(6~(1) ']  an(2) 
kan(2)J~ at 

B ( 1 ) = f d 2 f d 3 [ 1 - P ( 1 3 ) ] ( 6 0 ( 1 ) )  (6fl(3)'] _ _  
\6fl(3)J. \6n(2)J ,  

Ou(1) 
c(1) =/~(1) at 

(4.12a) 

0n(2) 
(4.12b) 

at 

(4.12c) 

D(1)=f d2 f d3 [l_ff(13)](&O(1)~ (6fl(3)'] ~u(2) (4.12d) 
\a/~(3)/. \au(2)/. at 
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First we will transform the term A. Using the continuity equation 
(4.3), the expression (3.4) relating the function ~ to the one-particle direct 
correlation function cl, and the symmetry property (3.8) of the functional 
derivatives of Ca, one readily finds 

A(1)= -- ~ri (~s(1) w(1)) 

+ f d2w(2) n(i) f2 dot n(2)-~--r2r2Ca(21~n,/7) (4.13) 

The last term on the rhs of the above equation can be evaluated with the 
help of the hierarchy equation (3.5). By appropriately permuting the 
variables and applying the identity (3.10), we can conveniently write this 
term 

xn( l )  f ~ dc~c~ n(2)n(3)g=(23]c~n,/7) 
B 

- f  d2 [ I - P ( 1 2 ) ]  w(Z)n(1)f~ depot-'( g)u(2)l~ 0/7(2) 
\  (77 )p 

1 + ] I d2 [w(1) - w(2)] [J(12) - /7( i2)  ~b;(12)] n(1) n(2) g2(121 n>/7) 

- w ( 1 )  u(11 n,/7) a/7(1) (4.14) 

The integrands of the first and the second terms of expression (4.14) are 
antisymmetric with respect to the permutation of the variables 1 and 2 and 
thus they contribute to the entropy flow. Using the standard technique, 
they can be transformed into minus the divergence of the respective 
currents ,IA1 and JA2" The expression for the current JAa reads 

1 J '(12) f d3 [w(2) - w(3)] [A(23) - fl(23) ~b'(23)] J,~l(1) = ~ f d2 

f x n ( 1 ) j  n(2)n(3)g2(23)len,/7) (4.15) 

For the current JA2, using, in addition to (4.1), Eqs. (3.9) and (3.4), we get 

JA2(1) = f d2 ~(12)  (6~k(1)'~ w(2). 0/7(2.....____))) (4.16) 
k<$/7(2))~ Or2 
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The third term of expression (4.14) has a symmetric integrand and 
contributes to the entropy source. It is convenient to represent this term as 
a sum of two contributions. The first contribution, which includes the 
operator A, is related to the entropy production at the potential discon- 
tinuities. Taking into account the definitions of the operators A and T, it 
can be transformed into the following form: 

a~"~r(1)=~ f dv~ f dx2 T(12)F~VT(12) (4.17) 

The second contribution is related to the continuous part of the potential 
and it reads 

1 
f dr, f dx2 v'2fl(12) ~'~(12) FzKVX(x~, x2) (4.18) R o ( 1 )  = 

As we will see, this contribution will be canceled in the final expression for 
the entropy-production density. Collecting the above results, we get the 
following expression: 

A+O(WO+JAI+JA2)/Sr~=aA+Ro--WU.~fl/Orl (4.19) 

Now we will make a similar transformation of the term C. By using 
the energy equation (2.5) with the closure (2.19), this term can be written 
as follows: 

C(1)= -0J-w(1) u(1) fl(1)]/~r 1 +w(1) u(1)- afi(1)/0r a 

+~f d2 [1-P(12)]~(1) f dv~ f dv2 
FKVTtx • T(12)+va2~b'~(12)] 2 , ~,x2) 

+~f dv, f dx2fl(12)(~(12) T(12)F~Wr(x,,x2) 

+~ f dvl f dx2 vI2fl(12) O'A12) FzKVX(xt, x2) (4.20) 

The third term on the rhs of (4.20) has an antisymmetric integrand and 
therefore constitutes the contribution to the entropy flux. It yields the 
negative of the divergence of the current J c  given by 

Jc(1)=~f d2J-(12) fl(1) f dvl f dV2 

• [~b(12) T(12)+ v~2~b's(12)] F~V~(xt, x2) (4.21) 
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The fourth term in (4.20) yields the contribution to the entropy production. 
The discontinuity in the potential ~b(0') at ru= R implies a corresponding 
discontinuity in g2 : 

g2(t2) = X(12) exp[-fl(12) ~b(12)] 

where the 1:(12) is a continuous function. Taking this and Eq. (2.17) into 
account, we can transform the fourth term into the form 

1 
ac(1) = - ~  f dv 1 f dx 2 F2(12 ) T(12)In g2(12) (4.22) 

The last term in expression (4.20) is simply equal to -R0.  Collecting the 
above results, we get 

C +  8(wflu + Jc)/&l = a c -  Ro + wu. Off/& 1 (4.23) 

The terms B and D have integrands antisymmetric with respect to the 
permutation of variables and they constitute the entire contributions to the 
entropy flux. With the help of identity (4.1) they can be transformed 
directly into the divergence of the current. However, the resulting expres- 
sion needs further transformation to get the total entropy current in a 
manifestly invariant form with respect to the Galilean transformations. 
Since the final expression is already very long, we relegate details of the 
calculations to Appendix B. The resulting expressions reads 

B + D = --O(JB+ o -- JAz)/gqr1 (4.24) 

where 

J,~+o(1) = f  d2 ~ 
karl(2)/, 

x { - f d 3  [(5n(3))  ~ -  n(3)+/.'['6fl(2)"~' u(3)~ a~_~)d ur3 

ax + f dx, f 4 \au(3)). [ff(34) T(34) + v34~b;(34)] FKVT(x3, x4) 

\6u(3)}. Lk6n(4)} e Or4 

+ (6u(3)'~ afl(4)l w(4))'~ 
\ ~-~)) }. -~r 4 _l [w(3)- (4.25) 

3 

and JA2 is given by Eq. (4.16). 
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Let us now collect previously obtained results. Taking into account 
Eqs. (3.1), (3.3), (4.7), (4.11), (4.19), (4.23), and (4.24), we get the 
following balance equation for the entropy density: 

ds 
+ 7-- (ws + J~) = a (4.26) 

era 

where the entropy-current density Js is given by 

J:  = J f f  + JffP -+- JA1 + J c  + JB+ D (4.27) 

Bk Bp with respective terms Js , "Js , J~l ,  J c ,  and JB+D given by (4.6), (4.8), 
(4.15), (4.2l), and (4.25). Note that all terms which survived in the expres- 
sion (4.27) are invariant under the Galilean transformations. With the help 
of (4.9), (4.17), (4.22), and (2.19) one can write the entropy-production 
density a in very compact form: 

1 
a(1)=~f dvl f dx2 

_ FKVTt- FKVTEx X [T12F~VT(x1,x2) 2 ~xl,x2) T(12)ln 2 t 1,x2)] (4.28) 

Entropy-production density (4.28) is a positive-definite quantity. To 
prove this, let us rewrite it as 

a(l)=~ dvx dx2~(r12-Rt) Iv12"f121 ~ Oz(v12"~t2) 
l=1 

I " X/(XI' X2)~ • Xz(xl, x 2 ) -  Yt(x~, x 2 ) -  Yt(xl, x2) m - -  (4.29) 
r/(Xl, x2)J 

where 

and 

~"(X1, X2) = b,(12) dff(12) F~VX(xl, x2) (4.30a) 

Y(xl, x2) --- d~(12) FKVXtx 2 ~ 1, x2) (4.30b) 

[see Eqs. (2.13)-(2.14)]. Since x - y - y  ln(x/y)>~O for x > 0  and y > 0 ,  it 
follows immediately from (4.29) that 

a(r; t) >/0 (4.31) 

for any r and t. 
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The balance equation (4.26), together with the inequality (4.31), serve 
us as a local formulation of the H-theorem for KVT IlL By integrating the 
entropy density (3.1) and entropy-production density (4.28) over the 
volume of the fluid we recover the global entropy and entropy-production 
functionals introduced by Karkheck et al. (~) In the present notation, 
entropy production a(1) = 0 if and only if 

Tt(12) F~(xl) Fa(x2) exp[- /?(12)  ~b(12)] = 0 (4.32) 

for l =  1, 2, 3, and 4. As was already discussed in I (see also ref. 13), condi- 
tion (4.32) with l = 1 is satisfied at the time t if and only if 

// m \3/2  m[-v - -  w ( / ) ]  2 

Fl(x;t)=n(r;t){"~k--~t"|kZ Blt  )/ exp 2kBT(t) (4.33) 

where the local density n(r; t) is an arbitrary function, and the temperature 
T(t) and the average velocity w(t) are uniform. Equation (4.32) with l =  2, 
3, 4 and the one-particle distribution function F~ of the form (4.33) requires 
the inverse potential-temperature field fl to be uniform and equal to 1/kB T. 
At equilibrium the kinetic equation (2.4) with the closure (2.9) resolves 
itself into the first equilibrium BGY equation. Therefore, like the REE, (8) 
KVT III exactly describes the equilibrium state of uniform and nonuniform 
fluids. 

5. D ISCUSSION 

In this paper we introduced a definition of an entropy density for a 
system described by KVT III and then derived a local entropy balance 
equation. We showed that it is possible to define a flux and a source term 
in such a way that the entropy-production density is a positive-definite 
quantity. All the quantities s(r), J~(r), and a(r) are local on a macroscopic 
scale, but on a microscopic scale they depend on the state of the system 
within the correlation range. The entropy, the entropy-current, and the 
entropy-production densities depend on the velocity distribution in such a 
way that only differences of particle velocities at different points are impor- 
tant. Therefore all these quantities are manifestly invariant with respect to 
the Galilean transformations. 

Due to the nonlocality on a microscopic scale of the entropy, entropy- 
flux, and entropy-production densities, the definitions of these quantities 
are nonunique. More specifically, the entropy produced, say, at point r can 
be as well assigned to any other point within the range of the correlations. 
Such change can always be compensated by an appropriate change of the 
definition of the current. This nonuniqueness is of a similar sort as a 
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nonuniqueness of the definitions of other quantities nonlocal on the 
microscopic scale, such as the potential energy density. 

Equation (4.28) shows that within KVT III the entropy is produced 
by the instantaneous collisions at the hard core and at the edge of the 
potential well. Since the influence of a smooth part of the potential on the 
evolution of the system is treated in a mean-field manner, there is no 
entropy production due to this part of the interaction. For the same reason 
only the impulsive collisions on the potential-well edge leads to the 
exchange between potential and kinetic energy. 

Karkheck et al. (4) have described the transport properties of real fluids 
by modeling them as a fluid composed of particles with a hard core and a 
truncated Lennard-Jones tail. While KVT III seems to work fairly well for 
the shear viscosity and the heat conductivity when applied to such a model, 
Stell and his colleagues (14~ have found that it predicts an infinite bulk 
viscosity when the truncation radius R goes to infinity (or when there is no 
discontinuity in the Lennard-Jones tail in the first place). The simple 
explanation of this is as follows. In the absence of such a discontinuity the 
exchange rate between the kinetic and potential energies is infinitely slow. 
A change of the volume of a system without an exchange between the 
kinetic and potential energies, for the states close to equilibrium, leads to 
a difference between potential and kinetic temperatures. On the other hand, 
a difference between the temperatures causes a proportional pressure 
difference in comparison with the total equilibrium situation. For infinitely 
small exchange rate between kinetic and potential energy, even a very slow 
change of the volume leads to the occurrence of a finite excess pressure, 
which corresponds to the infinite bulk viscosity coefficient. To avoid this 
difficulty, one needs a more sophisticated theory, which describes the 
exchange between kinetic and potential energies that actually occurs even 
for smooth potentials. 

A P P E N D I X  A 

In this Appendix we discuss briefly the definition of the correlation 
part of an entropy density associated with a nonequilibrium statistical 
ensemble (2.18). We start from the excess part of the Massieu function ~u 
associated with (2.18): 

~u= In S -  ~ dl 2"(1) n(1) - ~ u;d (A.1) 

where 

e =  dF N exp 2(x,; t ) -  2 fl(i) #(/j) (A.2) 
N = O  i = l  i , j = l  

j v~ i  

2"(1) = J dr,  2(x,) (A.3) 
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and 

~ i d  - -  f dl n(1) ln[h3n(1) - 1] (A.4) 

is the ideal part of the Massieu function. In our expression 2"(1) plays a 
similar role to the quantity [# - q~(1 )]/ks T in equilibrium theory, where/~ 
is a chemical potential and ~b(1) is an external potential. Taking into 
account the definition (A.1), it is a simple exercise to show that the 
quantity cl defined by 

fl 

can be expressed as 

c,(1)--ln n(1)-- ~*(1) (A.6) 

From (A.6) it follows that Eq. (3.5) is an analogue of the first BGY 
equation for equilibrium systems. 

Due to (A.5) and the general identity (3.10), the function ~ defined by 
Eq. (3.4) is the density of the nonequilibrium Massieu function (A.1): 

f d l  ~(1)= ~ (A.7) 

By differentiating Eq. (A.1), one also can easily demonstrate the identity 

i .8, 

which is equivalent to (3.11). Identities (3.8) and (3.9) follow from (A.5), 
(A.8), and the general identity 

52A[c~, /3] 32A[o~, /3] 
(A.9) 

6~(1) 6/3(2) 6/3(2) 6~(1) 

valid for a sufficiently smooth functional A [a,/3] of functions a and/3. 

A P P E N D I X  B 

In this Appendix we prove the identity (4.25) for the partial entropy 
current JB+D. It follows from (4.1), (4.12b), and (4.12d) that B+  D can be 
expressed in the form 

B + D = - ~ J ~  +, ) /~r  ~ (B.1) 
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where 

J~+D 
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=f d2J'(12)( 6t)(1)'] f d3 
\a/7(2)/= 

[(6/7(2)'~ 8n(3) f6fl(2)'~ 

We can evaluate the rhs of the above expression by applying the energy 
equation (2.5) and the continuity equation (4.3): 

J~+D = - f  d2 ~-(12) {6~(1)`] \6/7(2)). 

/6/7(2)'~ r , • ja,~ t6u(3)L 
x f dx4 Eq~(34) 5P(34) + v34~b'~(34)] F~VX(x3, x4) 

d Lk6n(3)/= \6u(3)/. J 8r3 

[(6/7(2)`] 8n(3), /6/7(2)'\ 8u(3)-] 
+ f <~3 L%-~777/-DC3 + t~-2~L--DC3 j .  w(3) } (=.3/ 

The first and the second terms in the curly brackets are invariant with 
respect to the Galilean transformations. The third term, which is not 
invariant, can be transformed with the help of the identity 

8u(31n,sr3/7) / d4 l / z /  --7-7-- l ~--ZT-~,,,iL\ont+Jlnor4+kopt,+j/,V/6u(3)'k 8n(4) /6u(3)\ 6/7(4)]8r4 J (B.4) 

which follows from the translational invariance of u. As result, we get 

f d3r(6fl(2)`] 8n(3)+ (3/7(2)'] (6u(3)'] dn(4)q 
Lkan(3))= 8r3 f d4 \6u(3))= \6n(4))~ 8r4 1" w(3) 

+ f d3 f d4(6/7(2)'~ (6=(3)'] 0J~(4).w(3 ) (B.5) 
26u(3)J. \~-fi---~/. o r  4 

By appropriate permutation of the variables, using the chain-rule identity 

6A(1)) = _f da(6A(1)`] (6C(3)`] 
6B(2))c \6C(3))s3 \6B(2)/A 
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and 

{6A(1)'] f6B(3)'] = ~ ( r l _ r 2  ) 
I d3 \-~-~Jc \6A(2)Jc 

where A, B, and C are arbitrary functionals, we can transform (B.5) into 
the form 

f d3 f d4(6/3(2)'~ F(6u(3)'~ On(4) 
\6u(3)J. Or4 

+ [5u(3)'~ 0fl(4)1" 0fl(2) (B.6) 
~ - - - - ~ ) ,  (~r4 ~ [ - w ( 3 ) - w ( 4 ) ] + w ( 2 ) .  8r~- 

Collecting Eqs. (B.1), (B.3), and (B.6) and taking into account definitions 
(4.16) and (4.24), we get Eq. (4.25). 
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